Accuracy standards


Accuracy Standards

INTRODUCTION

Resistance elements come in many types conforming to different standards, capable of different temperature ranges, with various sizes and accuracies available. But they all function in the same manner: each has a pre-specified resistance value at a known temperature which changes in a predictable fashion. In this way, by measuring the resistance of the element, the temperature of the element can be determined from tables, calculations or instrumentation. These resistance elements are the heart of the RTD (Resistance Temperature Detector). Generally, a bare resistance element is too fragile and sensitive to be used in its raw form, so it must be protected by incorporating it into an RTD.

Resistance Temperature Detector is a general term for any device that senses temperature by measuring the change in resistance of a material. RTD's come in many forms, but usually appear in sheathed form. An RTD probe is an assembly composed of a resistance element, a sheath, lead wire and a termination or connection. The sheath, a closed end tube, immobilizes the element, protecting it against moisture and the environment to be measured. The sheath also provides protection and stability to the transition lead wires from the fragile element wires.



Some RTD probes can be combined with thermowells for additional protection. In this type of application, the thermowell may not only add protection to the RTD, but will also seal whatever system the RTD is to measure (a tank or boiler for instance) from actual contact with the RTD. This becomes a great aid in replacing the RTD without draining the vessel or system.

Thermocouples are the old tried and true method of electrical temperature measurement. They function very differently from RTD's but generally appear in the same configuration: often sheathed and possibly in a thermowell. Basically, they operate on the Seebeck effect, which results in a change in thermoelectric emf induced by a change in temperature. Many applications lend themselves to either RTD's or thermocouples. Thermocouples tend to be more rugged, free of self-heating errors and they command a large assortment of instrumentation. However, RTD's, especially platinum RTD's, are more stable and accurate.

RESISTANCE ELEMENT CHARACTERISTICS

There are several very important details that must be specified in order to properly identify the characteristics of the RTD:

1. Material of Resistance Element (Platinum, Nickel, etc.)
2. Temperature Coefficient
3. Nominal Resistance
4. Temperature Range of Application
5. Physical Dimensions or Size Restrictions
6. Accuracy

1. Material of Resistance Element
Several metals are quite common for use in resistance elements and the purity of the metal affects its characteristics. Platinum is by far the most popular due to its linearity with temperature. Other common materials are nickel and copper, although most of these are being replaced by platinum elements. Other metals used, though rarely, are Balco (an iron-nickel alloy), tungsten and iridium.

2.Temperature Coefficient
The temperature coefficient of an element is a physical and electrical property of the material. This is a term that describes the average resistance change per unit of temperature from ice point to the boiling point of water. Different organizations have adopted different temperature coefficients as their standard. In 1983, the IEC (International Electrotechnical Commission) adopted the DIN (Deutsche Institute for Normung) standard of Platinum 100 ohm at 0oC with a temperature coefficient of 0.00385 ohms per ohm degree centigrade. This is now the accepted standard of the industry in most countries, although other units are widely used. A quick explanation of how the coefficient is derived is as follows: Resistance at the boiling point (100oC) =138.50 ohms. Resistance at ice point (0oC) = 100.00 ohms. Divide the difference (38.5) by 100 degrees and then divide by the 100 ohm nominal value of the element. The result is the mean temperature coefficient (alpha) of 0.00385 ohms per ohm per oC.

Some of the less common materials and temperature coefficients are:

Pt TC  =  .003902 (U.S. Industrial Standard)
Pt TC=.003920 (Old U.S. Standard)
Pt TC=.003923 (SAMA)
Pt TC=.003916 (JIS)
Copper TC=.0042
Nickel TC=0.00617 (DIN)
Nickel TC=.00672 (Growing Less Common in U.S.)
Balco TC=.0052
Tungsten TC  =0.0045


Please note that the temperature coefficients are the average values between 0 and 100oC. This is not to say that the resistance vs. temperature curves are truly linear over the specified temperature range.

3. Nominal Resistance
Nominal Resistance is the prespecified resistance value at a given temperature. Most standards, including IEC-751, use 0oC as their reference point. The IEC standard is 100 ohms at 0oC, but other nominal resistances, such as 50, 200, 400, 500, 1000 and 2000 ohm, are available.

4.Temperature Range of Application
Depending on the mechanical configuration and manufacturing methods, RTD's may be used from -270oC to 850oC. Specifications for temperature range will be different, for thin film, wire wound and glass encapsulated types, for example.


5. Physical Dimensions or Size Restrictions
The most critical dimension of the element is outside diameter (O.D.), because the element must often fit within a protective sheath. The film type elements have no O.D. dimension.To calculate an equivalent dimension, we need to find the diagonal of an end cross section (this will be the widest distance across the element as it is inserted into a sheath).



rtd_accuracy_class_a_class_b


The industry standard for platinum RTD's according to IEC-751 is + /- 0.12% (of resistance) at 0°C, commonly referred to as Class B accuracy. This will provide an accuracy of + /- 0.3°C at 0°C, which is quite good if you compare it to the + /- 2.2°C of a standard Type J or K thermocouple. But as the temperature increases, so does the permissible deviation due to the variations possible in the TC. So, not only do we have the possible + /- .3°C offset at 0°C, but also the probability that the TC is not equal to 0.00385. This could account for a permissible deviation of up to + /- 4.6°C at a maximum temperature of 850°C . But that's still better than the K thermocouple, which could be off by as much as + /- 6.4°C, and even more for the Type J, which is not recommended at this temperature. Because a well manufactured RTD will have high repeatability (relative to the application), Class B accuracy is generally sufficient unless there is a need for better interchangeability; or when measuring change of temperature; or if you know that you have special accuracy requirements.

When Class B accuracy is not quite enough, the International Electrotechnical Commission (IEC) offers us Class A accuracy, which permits + /- 0.15°C at 0°C and much tighter control of the TC. To ensure this control, the single ice point calibration acceptable for Class B sensors will not suffice. The IEC therefore states in section 4.2.2 of Standard 751. "The test for Class A thermometers shall be carried out at two or more temperatures suitably spaced over the stated working range".

The minimum and maximum temperatures of the stated working range are conve-nient points to chose and will ensure Class A accuracy, but will at the same time tend to drive up the cost of the sensor. It is more practical to look the application. If need to control the process most closely at 37°C, for example, choose a range from 0°C to 50°C This will fulfill your requirements without needlessly increasing costs or manufacturing restrictions. But remember, when specifying a Class A RTD, you must always include the working range at which it must perform to this accuracy.

Another word on Class A and Class B RTD's. These are IEC designations of accuracy. Although conforming to the use of a 0.00385 TC, the ASTM has its own designations of Grade A and Grade B that differ slightly from the IEC permissible deviations.

Of course, classes A and B or grades A and B cannot cover every possible accuracy specification desired. Then you need to spell out your requirements for the applications engineer. If your SPC/SQC charts indicate that you need to control a specific process within + /- 0.5°C at 250°C, even a Class A RTD will not do the job. As we discussed earlier, you may not actually need the accuracy at this point, but rather the repeatability. But if you believe that starting with an accurate sensor is the first step toward tight control of the process, request an accuracy of + /- 0.5°C at 250°C, or over the range of 200°C to 300°C. This is not unrealistic for a well-made RTD, although it requires special selection of the sensing element at this temperature. Keep in mind that this special selection will generally result in a longer delivery time and higher price tag on the RTD. Conversely, not all applications require even Class B accuracy. If you need to know only, "Is it hot or is it not?" can generally appreciate some savings by requesting a less accurate sensor that will still suit your needs.

All too often the specification will read something like "Accuracy within + /- 1.0%". My question: "Percent of what?" If it is meant to be percent of indicated value we need to clarify a few things. There are four primary temperature scales in use today. Kelvin and Rankine, which are absolute temperature scales, and Celsius and Fahrenheit, which are not. Let's take the freezing point of water in Celsius for example. What is + /- 1.0% of temperature accuracy at 0°C? A perfect reading? Possible, but not likely. If we were reading this in Fahrenheit the tolerance would be + /- 0.32°F; in Kelvin, it would be + /- 2.73°K, which equals + /- 2.73°C. So which is right? None. The specification was poorly written.It is acceptable, however, to use percent for % F.S. if you clearly state what the scale will be.

Or we can say percent of resistance at a given temperature, as the IEC does for the nominal resistance of a Class B RTD; 100 ohm,+ /- 0.12% at 0°C. Aside from these cases, it is generally better to state your requirements in terms of temperature tolerance in degrees over the temperature range where it is actually required.

class a class b accuracy

sales@thermometricscorp.com